Skip to content Skip to navigation

Microwave Impedance Microscopy

Overview

Microwave Impedance Microscopy (MIM) uses the local interaction between a microwave probe and a sample to make nano-scale images (< 100 nm spatial resolution) of the conductivity and permittivity of a sample. It has important applications and potentials in imaging semiconductor devices, buried structures and two-dimensional electron gases (2DEG), phase separated materials, biological specimens, and others.

The MIM Probe

Two major scientific research directions

Instrumentation

  • Piezoresistive feedback in He-4 and He-3 systems using Generation-6 MIM probe
  • Approach-curve-based absolute MIM measurement mode

Publications

[19] W. Kundhikanjana et al. Direct Imaging of Dynamic Glassy Behavior in a Strained Manganite Film. Physical Review Letters 115, 265701 (2015)

[18] Eric Yue Ma, Yongtao Cui, Kentaro Ueda et al. Mobile metallic domain walls in an all-in-all-out magnetic insulator. Science 350, 538 (2015)

[17] Eric Yue Ma et al. Charge-order domain walls with enhanced conductivity in a layered manganite. Nature Communications 6, 7595 (2015)

[16] Eric Yue Ma et al. Unexpected edge conduction in mercury telluride quantum wells under broken time-reversal symmetry. Nature Communications 6, 7252 (2015)

[15] Y. L. Yang et al. Shielded piezoresistive cantilever probes for nanoscale topography and electrical imaging. Journal of Micromechanics and Microengineering 24, 045026 (2014)

[14] W. Kundhikanjana et al. Unexpected surface implanted layer in static random access memory devices observed by microwave impedance microscope. Semicond. Sci. Technol. 28, 025010 (2013)

[13] Y. Yang et al. Batch-fabricated cantilever probes with electrical shielding for nanoscale dielectric and conductivity imaging. J. Micromech. Microeng. 22, 115040 (2012)

[12] K. J. Lai et al. Imaging of Coulomb-Driven Quantum Hall Edge States. Phys. Rev. Lett. 107, 176809 (2011)

[11] K. J. Lai et al. Nanoscale microwave microscopy using shielded cantilever probes. Appl. Nanosci. 1, 13(2011)

[10] W. Kundhikanjana et al. Cryogenic Microwave Imaging of Metal-Insulator Transition in Doped Silicon. Rev. Sci. Instrum. 82, 033705 (2011)

[9] K. J. Lai, M. Nakamura et al. Mesoscopic Percolating Resistance Network in a Strained Manganite Thin Film. Science 329, 190 (2010)

[8] W. Kundhikanjana et al. Hierarchy of Electronic Properties of Chemically Derived and Pristine Graphene Probed by Microwave Imaging. Nano Lett. 9, 3762 (2009)

[7] K. J. Lai et al. Nanoscale Electronic Inhomogeneity in In2Se3 Nanoribbons Revealed by Microwave Impedance Microscopy. Nano Lett. 9, 1265 (2009)

[6] K. J. Lai et al. Tapping mode microwave impedance microscopy. Rev. Sci. Instrum. 80, 043707 (2009)

[5] K. J. Lai et al. Calibration of Shielded Microwave Probes Using Bulk Dielectrics. Appl. Phys. Lett. 93, 123105 (2008)

[4] K. J. Lai et al. Modeling and characterization of a cantilever-based near-field scanning microwave impedance microscope. Rev. Sci. Instrum. 79, 063703 (2008)

[3] K. J. Lai et al. Atomic-force-microscope-compatible near-field scanning microwave microscope with separated excitation and sensing probes. Rev. Sci. Instrum. 78, 063702 (2007)

[2] Z. Y. Wang et al. Quantitative Measurement of Sheet Resistance by Evanescent Microwave Probe. Appl. Phys. Lett. 86, 153118 (2005)

[1] Z. Y. Wang et al. Evanescent Microwave Probe Measurement of Low-k Dielectric Films. J. Appl. Phys. 92, 808 (2002)